מתמטיקה מושחתת – 2

חינוך

קטגוריה חינוך | תאריך פרסום 16 נובמבר, 2015 | ע"י פוסט אורח

4

כשעדיין ניהלנו יחד את מושבה, רונית ואני, תמיד התווכחנו על נחיצותה של המתמטיקה בחיים. כמעריץ גדול של מתמטיקה תמיד טענתי, שהדרך בה מלמדים אותה היא הבעיה… ועל זה שנינו תמיד הסכמנו. אז אחרי שרונית העלתה את החלק הראשון בסדרת מאמרי המתמטיקה המושחתת של דני לסרי ממש מזמן, הנה החלק השני…

————————————-

[דני לסרי]

כששואלים ילד שמתחיל לדבר מאין הוא מכיר את המילה “סוס”, הוא יגיד שהוא יודע מעצמו, שאף אחד לא אמר לו. והוא יתעקש על כך בעקשנות שאנו עשויים לפרש כילדותיות, או סתם גאוותנות.

אבל באמת לא סתם הוא מתעקש: יש מובן עמוק שבו הוא צודק – הוא זה שהמציא את המילה “סוס”. כי אף על פי שהמילה סוס הייתה שם בסביבה, בשפה, כחלק מן האקלים שבו גדל, הוא היה צריך להמציא אותה מחדש בנפשו. גם אם היה שם מישהו שהצביע ואמר לו “הנה, זה סוס” עדיין זה היה מחוסר משמעות מבחינתו עד שהבשיל בתוכו משהו.

וכשהבשיל המשהו הזה והוא למד את המילה סוס, הוא לא למד אותה כי מישהו אמר לו – העביר לי מידע “זה סוס” – הוא למד אותה כי הוא שמע אותה מאות פעמים לפני כן. בהתחלה היא הייתה חלושה, לא מובנת, לא מחוברת, ואט אט היא בקעה מתוך הערפל עד שמילאה את תודעתו. היא הבשילה בצד מילים אחרות, ובצד מיומנויות שפתיות ואחרות שרבות מהן כבר היו טבועות בנפשו, ואז יום אחד, בכוח יצירתו הוא גילה אותה בנפשו. משם דלה אותה בביטחון של הרגשה וידיעה, מביא אותה בו זמנית גם מן המעמקים ההיסטוריים שבהם נוצרה לראשונה, ואשר לשם גם מחוברים שורשי נפשו.

וכשהוא אומר לפיכך “אני גיליתי את המלה סוס” הוא צודק, הוא אכן המציא אותה מחדש.

* * *

רק שאת הביטחון הזה שהמילה “סוס” היא מילה שלו, שייכת אליו באופן העמוק שבו יצירה שייכת לממציא שלה, הוא לא יתמיד להחזיק לאורך זמן. במוקדם או במאוחר הוא יפנים את המסר שהשפה, כמו גם חלקים כל כך נכבדים אחרים של העולם, שייכים לאחרים, ואם יהיה נחמד הם יתנו לו רשות להשתמש בה.

אותו דבר לגבי המתמטיקה. כשפוצחת ההבנה המתמטית של הילד היא מופיעה אצלו כיכולת, כראייה, כהבנה, משהו ששיך אליו לחלוטין, שהוא מרגיש חלק ממנו, כמו יד או רגל. הוא מבין, הוא יודע, הוא רואה. אף אחד לא מלמד אותו – כמו דברים רבים אחרים, המתמטיקה היא חלק מאוצר חייו, משפתו, משייכותו לאדמה, מהרגשתו, כשרונו ועוצמתו.

אבל השנים עושות את שלהן. הוא לומד, (ונדמה לי שאין מקום שבו הוא לומד את זה באופן כל כך קיצוני כמו בעולם המתמטיקה), שבעצם המתמטיקה לא שייכת אליו, היא שייכת למורה. היא תתקן אותו, היא תגיד לו שהוא טועה, היא תאשר אם עשה טוב או עשה רע. מתוך כך הוא ילמד לחשוד בעצמו, לא להאמין לעצמו, לא לסמוך על הרגשתו, על ראייתו, על הבנתו. בסופו של דבר הוא יסתובב בארץ המתמטיקה כמו שמסתובב זר בארץ לא שלו.

אכן, הוא נושל מנחלתו.

האם זה נעשה בכוונה, או שזו סתם אי שימת לב של המבוגרים?

* * *

מכל מקום, כשזה יגיע לשלב הזה הוא עשוי לעשות טעויות מן הסוג שג’והן הולט מזכיר בספרו “כיצד נכשלים ילדים”: “אם יש לך 6 קנקנים, ואתה רוצה לשפוך 2/3 ליטר לימון לכל קנקן, לכמה מיץ לימון תצטרך? תשובתו הייתה 18 ליטר. שאלתי: כמה בכל קנקן? שני שלישים של ליטר. אמרתי: האם זה פחות או יותר מליטר אחד? פחות. אמרתי: וכמה קנקנים יש? שישה. אמרתי: על כן זה לא הגיוני. הוא משך בכתפיו ואמר: אולי, אבל כך זה יוצא לפי השיטה.”

זה חוסר האכפתיות וחוסר השייכות שיוצר את התשובות המוזרות האלה. בטח, הוא משתמש באיזו טכניקה, אבל באופן עיוור, בלא שום אחריות לתוצאה. אין לו תחושת אורינטציה, מוכרות, ראייה. הוא מסתובב בעיר זרה ופולט תשובות באותה אי-אחריות שבה זורקים את הזבל במדינה זרה – זה לא שלי, 18 ליטר.

ומדוע לא אכפת לו?

כי הוא למד מתמטיקה בתוך הקשר מכאני-הישרדותי – אקלים של אי-אכפתיות עקרונית, שבו הערך הגבוה ביותר לאדם, זה של החירות והעניין, נגנב יחד עם תחושת השייכות שלו. ומדוע שיהיה אכפת לו? רק כי הוא צריך להצליח במבחן? זו לא סיבה ראויה. זו סיבה שמחנכת לרדידות נפשית.

האם אתם מפקפקים בכך שזו החוויה של רוב ילדי בית ספר? האם אתם מוכנים לבדוק את האפשרות שזו לא הייתה החוויה שהילד נכנס אתה לבית ספר (או לגן)?

* * *

תייר מגיע לעיר חדשה בטיול מאורגן. האוטובוס לוקח אותו למלון, ובצהרים לוקח אותו למסעדה ומחזיר אותו למלון. לכאורה התייר הזה יודע איך להגיע מן המלון למסעדה. הוא הביט מן החלון של האוטובוס, לפחות במידה מסוימת הוא מכיר את העיר. ולא כך הוא. העיר הרב ממדית מצטמצמת עבורו לשתי נקודות שהקו ביניהן אובד בחלל. שני דברים חסרים לו כדי להכיר את העיר: האקטיביות ותחושת הרצף במרחב.

היות והקו לא משובץ בתוך מרחב מוכר אין שום משמעות למסוימותו של הקו, באותה המידה הוא היה יכול להיות פרוש בכיוון אחר, בעיר אחרת, זה לא היה משנה. הדרך הממשית להגיע מנקודה אחת לנקודה אחרת כוללת את ההתייחסות לכל הפניות האפשריות שלא נעשו, לפרישת הכבישים האחרים, הבתים האחרים. על מנת להכיר את העיר עליו ללכת לאיבוד בתוכה, להכיר לא רק את הדרך מא’ לב’ אלא גם את כל המרחב האחר שביחס אליו פרוש הקו, את כל מוקדי ההחלטה שבהם הוא בוחר ללכת בדרך זו ולא אחרת ורואה לאן זה מוביל אותו. זה חייב להיות משהו פעיל שבו לתנועתו יש משמעות, זה חייב להיות חלק מדיאלוג.

ודיאלוג הוא גישוש, הוא רצף, הוא אף פעם לא שחור ולבן.

כך גם במתמטיקה ההתמצאות דורשת שיטוטים, בדיקות, טעיות, מחקר שנותן לה את הרב ממדיות שלה. לא מספיק שהילד ידע טכניקה להגיע משאלה לתשובה, חשוב שירגיש את הקשר ביניהם, ומדוע נבחרה דווקא דרך זו ולא דרך אחרת, ומה היה קורה אם היה פונה בדרך אחרת. לכן כאשר אני עובד עם ילד והוא פונה בכיוון “לא נכון” אני פונה אתו, רואה לאן זה מגיע, ומאפשר לו לראות אם זה המקום שאליו הוא רצה להגיע.

התמצאות היא לא עניין חד ערכי נקודתי. היא מתפרשת על פני מישור, היא חלק מרצף. כדי לשמור על שיווי משקל אדם כל הזמן נופל ומתקן. הוא לא עומד באופן סטטי בנקודה המדויקת של השיווי משקל ולא זז משם – אם זה היה כך אז הוא היה מאבד לחלוטין את הגמישות שלו, כל משב רוח היה מפיל אותו, הוא לא היה מחזיק מעמד בעולם דינמי. אבל הרבה פעמים זה המקום שאליו נקלעים ילדים שלומדים מתמטיקה, הם מאבדים לחלוטין את הגמישות שלהם. הם מכירים רק את התשובה המדויקת, ומעבר לזה – תהום. התמצאות חייבת להתפרש על פני המרחב, תוך שמירה על תחושת הרצף. היא לא יכולה להיות קפיצה מן הכלום אל המשהו, היא תנועה. הילד שרוצה להבין מנסה להרגיש את הרצף, את התפתחות, את הדינמיקה, מה קורה כשמזיזים את זה קצת ומה קורה כשמזיזים את זה קצת. וכך כשהוא טועה הוא לא ישר נופל לתהום הוא מחליק הצידה והוא יכול לזהות את ה”הצידה” הזה ביחס לטעות שלו, זה חלק מן הרצף.

לתחושת השייכות הזו מגיע הילד כשלא מפריעים לו לשחק עם מספרים, לעשות בהם ניסויים, לראות איך הם מתפתחים. ומה שחשוב במשחקים היצירתיים הללו אלה שני הדברים, גם עצם האקטיביות של מי שמשחק ומנסה, שהוא מבין את החיפוש של עצמו ובמילא גם את התשובות שחיפוש זה מניב, אבל גם ההרגשה של הרצף. הוא יספור עד מאה, עד אלף, אפילו שכביכול העיקרון מובן לו, כי מתוך כך הוא קונה את תחושת הרצף. הוא יחזור ויפרק את המספרים, כך שאם יפלו לו מן הידיים הוא יוכל להרכיב אותם מחדש. מתוך כך גם תהיה לו תחושה בסיסית ש35 לא יכול להיות התשובה הנכונה ל16 ועוד 18, לא בגלל שזה לא הפתרון שכתוב בספר, אלא בגלל שירגיש, אפילו בלי לתת לעצמו דין וחשבון, שלא יכול להיות שמספר זוגי עם מספר זוגי ייתן מספר לא זוגי.

הילד יכול להרגיש את כל זה כשהוא מרגיש ביטחון של התמצאות בעולם שהוא שלו. כשהוא ממשיך להישען על ההרגשה שלו באמון גדול בעצמו ובראייתו, כשאין לא בעיה ללכת לאיבוד בעולם הזה, כי זה הבית שלו, וגם אם הרחיק לכת וטעה והתבלבל, הוא מריח את המרכז ומסוגל לשוב אליו.

* * *

כמובן כל זה לא יכול לקרות במציאות שבה אסור לטעות. שבה הטעות היא חטא. מציאות הישרדותית של חיים ומוות שבה לכל טעות יש מחיר כואב.

מחקרים רבים שנעשו על המשגות מוטעות (misconceptions) של ילדים הראו שבעצם רוב ה”טעויות” הן טעויות שיטתיות הנובעות מהבנה ולא מאי הבנה. רק שההבנה היא הבנה אלטרנטיבית (וכך יש שמכנים זאת בשם המשגות אלטרנטיביות במקום המשגות מוטעות). כך שבאופן פרדוכסלי מה ש”מפריע” לילד לפתור נכון זה ההבנה שלו.

אני חושב שהרבה ממכוני הבגרות הפנימו את העניין הזה והגיעו למסקנה שהפתרון ל”בעיית ההבנה” היא פשוט למחוק את ההבנה – ללמד את הילד לא להישען על עצמו בכלל – רק על הטכניקה והסמכות של הטכניקה.

יופי למכוני הבגרות.

כל כך עצוב לילד, למתמטיקה.

אולי כדאי להבין מחדש מה המשמעות של המילה הזו “להפריע” ומה קורה כאשר מנסים למחוק את ההפרעה.

* * *

כשילד אומר לי שחמש לחלק לשתיים זה שלוש, האתגר שלי הוא לא למחוק את הטעות שלו ולשים תחת זה את התשובה הנכונה, אלא קודם כל להבין את מה שהוא רוצה ללמד אותי. כי מה שאני תופס כאי-הבנה שלו, והוא בעצם הבנה אלטרנטיבית שלו, עתיד להפרות אותי, אם רק אדע לפגוש אותו. הוא לא סתם אמר שלוש. הוא ראה משהו. אמנם משהו שונה ממה שאני רואה, אבל הוא ראה, ואני רוצה לעזור לו לראות, לא להחליף את הראיה שלו בידיעה מכאנית. אני רוצה לעזור לו לשכלל את הראיה שלו, לעזור לו לחזק את האמון בראיה שלו, ולא להחליש אותו.

ללכת אחרי מישהו שיודע מחמיץ את נקודת המוצא של מי שלא יודע. היודע כבר לא רואה את מה שהוא לא יודע. אבל בשביל מי שעדיין לא יודע, כל האפשרויות לגיטימיות, הוא עדיין לא מוסלל, והמרחב כולו פתוח לפני עיניו.

הראיה המשוכללת צומחת מן הראיה הפחות משוכללת, היא לא צומחת מאי-ראיה. מטרת העיסוק במתמטיקה היא לא שהילד יהיה פחות בטוח בעצמו, אלא שיהיה יותר בטוח בעצמו, עד כדי כך בטוח בעצמו שיהיה מוכן לנסות, לטעות, להרגיש שהוא טועה ולשכלל את ראייתו. באופן זה ה”טעות” כביכול, היא הגרעין למה שבהמשך יהיה “לא-טעות”. דומה הדבר לסירת מפרש, העיקר בהתחלה זה להתחיל לנוע, אחרי שהיא נעה זה כבר פרט קטן לסובב אותה, כי עצם התנופה מאפשר לסבוב ההגה להיות בעל משמעות. אבל לפני התנועה, סיבוב ההגה הוא חסר משמעות ולא יסובב את הסירה. גם כאן, זה בכלל לא משנה אם הוא ראה בכיוון הנכון או לא, מה שחשוב שהוא ראה משהו, ועל המשהו הזה שהוא ראה, גם אם הוא קטן, גם אם הוא בכיוון הלא נכון, יכולה התנופה לרכב. זה הגרעין שעליו עתידה להבנות גאונותו המתמטית.

וכך כשהוא אומר לי שחמש לחלק לשתיים זה שלו, תפקידי הוא לגלות שהוא צודק – לא שיחדל להאמין בעצמו אלא שיעמיק להאמין בעצמו. תפקידי להיות אתו בראיה שלו. לראות שאכן חמש לחלק לשתיים, זה שתיים ושלוש. ומדוע לא אמרתי שאני מתכוון לחלק את חמש לחלקים שווים?

* * *

וכך אני רואה שאחד הדברים הקשים ביותר שעושים המבוגרים לילדים, זה לחנך אותם לא להאמין לעצמם. לא להאמין לגופם, לא להאמין להרגשתם, לא לסמוך על עצמם, לא לראות בעצמם מקור של טוב ושפיות. באופן שיטתי לגמרי הם מרסקים את המקור היוצר שלהם, את עצמאותם, עצמיותם, עוצמתם. מתייחסים לילד ולהרגשתו כמשהו של ילדות – ” עד החתונה זה יעבור”.

ואני שואל על רקע זה איך אפשר ללמד מתמטיקה בלי לסרס את הילד תחילה. איך אפשר, כשילד אומר דבר מה שמבחינה מתמטית הוא טעות, לתמוך בו בלי לגנוב ממנו את זכות הבעלות על המתמטיקה, איך אפשר לעזור לו להשתכלל, לדייק יותר, מבלי למחוק אותו תחילה?

כשילד מגיע לכתה א’ הוא כבר יודע הרבה על מספרים. זה לא יעזור שהמורה המיומנת תגיד לו “תשכח את כל מה שאתה יודע, אני עומדת ללמד אותך הכל מחדש ובצורה מסודרת”. בדמיון שלה היא רואה שולחן מבולגן שהיא רוצה להוריד ממנו את כל המבלבל, כדי להניח את הדברים מחדש בערמות מסודרות. יש בזה הגיון כשזה נוגע לשולחנות, אבל זה לחלוטין מופרך כשמדובר בבני אדם. הילד הוא מנוע של הבנה, מלא בהיסטוריה של ראייה והרגשה. כל עובדה מתמטית חדשה שתגיד לו המורה תעוכל ותעובד ותובן על ידי המכלול השלם של מי שהוא, ניסיון חייו וכשרונו. הוא לא בא לכיתה ריק, יש לו כבר אינספור הבנות, רגשות, גרעיני מושגים. הוא לא יכול לזרוק את ניסיון חייו והבנתו החוצה, הבלגן הזה שהיא רוצה לנקות כדי להתחיל מחדש זה הוא עצמו. היא רוצה לנקות את הייחודיות שלו, את האופן האישי שלו להבין דברים. וככה, כמו דחפור מיומן, היא תיישר את השטח, אצלו ואצל עוד שלושים ילדים שיושבים לידו. הבעיה היא לא שהיא לא יודעת מתמטיקה או לא יודעת ללמד מתמטיקה, הבעיה היא שהיא יודעת יותר מדי. ורק את הדבר האחד הזה היא לא יודעת מספיק: שהיא לא יודעת.

ועולה השאלה, אם כן, איך אפשר לעזור לילד להשתכלל בלי לשבור את רוחו ורצונו, בלי לגנוב ממנו את האינטואיציה, ותחושת האורינטציה, איך אפשר להגדיל אותו בעולם המתמטיקה מבלי לעשותו כזר בארץ נוכריה?

* * *

אסור לוותר על הרגשות, על ההבנה, על הראייה, על תחושת היופי והמשמעות. וכמו שכבר אמרתי במאמרי הקודם, המתמטיקה היא סמל האמת והזדמנות לתרגל יושר. אצילות שאפשר לטפח הרבה לפני שמטפחים מיומנות טכנית. מתוך כך גם יכולה להיות למיומנות טכנית משמעות, אבל בלי זה היא משחיתה.

לשרוד בכל מחיר זו חכמה קטנה. כל שבלול יודע לעשות את זה. החכמה היא לחיות כאנשים. ולהיות איש, זה לראות, זה להרגיש, זה להאמין, ולפעול בתוך עולם שהוא בעל משמעות. זה לראות, זה ליהנות מן היופי, זה להתענג, ולחוות את העולם כמקום של הגשמה, ולא רק כמרחב הישרדותי שצריך להסתדר בתוכו. להיות איש, זה להבין שערכים הם לא עוד מצרך או לבוש מגן העושה אותנו ראויים בעיני אנשים אחרים, זה להבין שערך הוא מידה, הוא עוצמה אישית, הוא נוכחות, הוא אצילות.

והמתמטיקה היא הזדמנות, היא יכולה להיות מקום של חקירה משותפת, מרחב שבו אדם לומד להיות מדויק כאומנות, כערך, כמידה של יושר. מקום שאפשר להניח בו בצד את מושגי הצדק והעוול, הדרמות של הכוחות והמניפולציות לטובת החוכמה.

היום, בשביל רבים, המתמטיקה היא בדיוק ההפך מזה – קיר אטום סתום. ולא מכיוון שלא היו בשיעורי מתמטיקה, אדרבא, כי הם היו בשיעורים רבים מדי.

* * *

גם אם יש הרבה ילדים בעולם ממש לא משתמע מכך שחינוך צריך להיות חינוך להמונים. חינוך להמונים הוא דבר וסתירתו. כדי לעזור לילד לטפח את מידותיו הוא חייב להיות יחיד לאינסוף ולקבל יחס אישי לחלוטין. הוא צריך שיראו אותו, שיתייחסו אליו לא כאל “התלמיד שמעון”. אין דבר כזה “התלמיד שמעון”, זו פיקציה שמערכת החינוך המציאה. ואילו הוא, שמעון הממשי, זקוק שיתייחסו אליו ברצינות, לא בתור אחד מתוך אלף, אלא בתור האחד. אפילו בתור האחד שמסוגל להשהות את גאוותו ולהיות אחד מאלף.

אני זוכר שבילדותי הייתי משוכנע שכל המבוגרים, ההורים, ראשי הממשלה, המורים, עשויים חטיבה אחת ומנהלים ישיבות כיצד יש לנהל את העולם. לא הבנתי בדיוק איך זה עובד, מתי הם נפגשים, חשבתי אולי בלילה או אולי במקום הזה שהולכים אליו המבוגרים במשך היום – ב”עבודה”. הייתי בטוח שכקבוצה של אנשים מבוגרים הם גם מייחדים זמן לבחון אותנו, הילדים, יושבים ומדברים על כל ילד, רואים כמה התקדם, ואיזה עוד דברים צריך להכין לו כדי שימשיך להתקדם. הייתי משוכנע הם מתקשרים זה עם זה כדי לדבר עלינו, ושאכפת להם באופן עמוק ויסודי, שהם פנויים לטפל בנו. ורק בדיעבד הבנתי שעולם המבוגרים הוא מסכת מסוכסכת, שאנשים הרבה יותר מדי עסוקים בעצמם מכדי לחשוב באמת ובאופן רציני על כל ילד. שבאמת לא אכפת להם. הם עסוקים מדי בהישרדות.

חינוך לא צריך להיות חינוך להמונים. “חינוך להמונים” מעלה על הדעת את המרחב ההישרדותי על כל מאבקי הקיום שלו. חינוך צריך להיות חלק ממרחב יצירתי – מקום בו לכל מורה, מבוגר, איש צוות, יש מרחב להתפנות באופן עמוק ובלי לחץ. אין לזה שום קשר לכמות הילדים. אין שום אילוץ שבעולם שמצדיק חינוך להמונים. חישבו רק על כמות השעות שילד ממוצע מבלה בשיעורי מתמטיקה במשך שתים עשרה שנות בית הספר. לפי החישוב שלי זה מסתכם בכאלפיים שעות. אלפיים שעות שבמקום להתחבר למנוע של הילד, עמלים לכבות אותו, לרסן אותו ולהניע אותו מבחוץ. כדי להגיע לרמה של מתמטיקה תיכונית עם הבנה עמוקה לא צריך יותר מאשר עשירית מזה, מאתיים שעות של למידה מתוך רצון ועניין, מתוך בחירה ואהבה, מאתיים שעות של מפגשים משמעותיים הקורים באופן דיאלוגי, מאוורר, חקירתי, ישר. כל השאר עושה דברים מיותרים ומזיקים.

——————————————-

דני לסרידני לסרי – מחנך וסופר, אב לארבעה, יזם וניהל את בית ספר מיתר, מרכז את האקדמיה הדיאלוגית, מבין ספריו: “חינוך בביצת הפתעה”, “הארות לפילוסופיה של נוודים”, “באיזה גודל רואה אותנו אלוהים”, “פינוקיו יורד מן הפסים”, “מקום לגדול”.



קטגוריות

תאריך פרסום 16 נובמבר, 2015 | ע"י פוסט אורח

4

Tags: , , , , ,



על המחבר

Profile photo of פוסט אורח



כתיבת תגובה

האימייל לא יוצג באתר. שדות החובה מסומנים *

4 תגובות למתמטיקה מושחתת – 2

  1. ענבל

    מאמר חשוב. תודה רבה ולייק ענק.

  2. רן

    דני לסרי אומר ביושר את האמת בפרצוף ומחזיר אותי כל פעם לסנטר

  3. השיכים

    מרתק ממש. ופשוט נכון.
    על איזו אלטרנטיבה חינוכית אתה ממליץ .?

  4. רונית

    נהדר רואי, שיחה בהמשכים 🙂